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A radiomics-based logistic regression model 
for the assessment of emphysema severity

doi • 10.5578/tt.20239710
Tuberk Toraks 2023;71(3):290-298
Received: 10.09.2023 • Accepted: 19.09.2023

R
ES

EA
R

C
H

 A
R

T
IC

LE

Mutlu GÜLBAY(ID) Clinic of Radiology, Ankara Bilkent City Hospital, Ankara, Türkiye

ABSTRACT

A radiomics-based logistic regression model for the assessment of emphysema 
severity

Introduction: The aim of this study is to develop a model that differentiates 
between the radiological patterns of severe and mild emphysema using radi-
omics parameters, as well as to examine the parameters included in the 
model.

Materials and Methods: Over the last 12 months, a total of 354 patients were 
screened based on the presence of terms such as “Fleischner”, “CLE”, and 
“centriacinar” in their thoracic CT reports, culminating in a study population 
of 82 patients. The study population was divided into Group 1 (Fleischner 
mild and moderate; n= 45) and Group 2 (Fleischner confluent and advanced 
destructive; n= 37). Volumetric segmentation was performed, focusing on the 
upper lobe segments of both lungs. From these segmented volumes, radiomics 
parameters including shape, size, first-order, and second-order features were 
calculated. The best model parameters were selected based on the Bayesian 
Information Criterion and further optimized through grid search. The final 
model was tested using 1000 iterations of bootstrap resampling.

Results: In the training set, performance metrics were calculated with a sensi-
tivity of 0.862, specificity of 0.870, accuracy of 0.863, and AUC of 0.910. 
Correspondingly, in the test set, these values were sensitivity= 0.848; specifi-
city= 0.865; accuracy= 0.857; and AUC= 0.907.

Conclusion: The logistic regression model, composed of radiomics parameters 
and trained on a limited number of cases, effectively differentiated between 
mild and severe radiological patterns of emphysema using computed tomog-
raphy images.
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ÖZ

Amfizem ciddiyetini değerlendiren radyomiks tabanlı lojistik regresyon 
modeli çalışması

Giriş: Bu çalışmanın amacı, radyomiks parametreleri kullanarak ağır ve hafif 
amfizeme ait radyolojik paternleri ayırt eden bir model geliştirmek ve modele 
katılan parametreleri incelemektir.
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INTRODUCTION

The Global Initiative for Chronic Obstructive Lung 
Disease (GOLD) criteria used for staging chronic 
obstructive pulmonary disease (COPD) do not include 
a radiological parameter (1). Thoracic CT scans, often 
used to identify complicating or additional 
pathologies, do not directly take part in COPD 
classification, not only due to the avoidance of 
administering ionizing radiation to the patient but 
also because of the role of radiological data being 
reader-dependent and subjective, thus causing 
significant limitations or biases (1-3). Radiation doses 
have significantly reduced over time, with the 
adoption of low-dose thoracic CT techniques and 
even ultra-low-dose thoracic CT achieving 
comparable results (4,5).

To standardize definitions among radiologists, the 
Fleischner Society classification framework divided 
centrilobular emphysema, a subtype of COPD, into 
five radiological subtypes ranging from trace and 
mild to moderate, confluent, and advanced  
destructive (6). A subsequent study reported that 
individuals with confluent and advanced destructive 
patterns have a higher risk of mortality during follow-
up compared to those with mild and moderate 
subtypes; however, the study also highlighted the 
need for comparing visual scoring with quantitative 
methodologies (7).

Centrilobular emphysema (CLE) is characterized on 
thoracic CT scans in the parenchymal window as 
hypodense areas, resulting from gradual destruction 
and loss of elastic recoil in the distal small airways 
and alveoli (7). The hypodense parenchymal areas 
described in these studies have been reported to 
range between -950 and -970 Hounsfield Units  
(HU) (8), with some publications reporting values as 
high as -910 HU (9). Instead of using a fixed HU 

value as the evaluation method based on density, it 
has been suggested to consider the ratio of voxels 
with lower density than the 15th percentile (9).

Algorithms for the automatic classification of 
emphysema patterns have been developed using DL 
or unsupervised ML methods (10-13). In the literature, 
there is a lack of sufficient information on the 
effectiveness of lobe-specific volumetric segmentation 
in assessing the severity of centrilobular emphysema, 
a disease primarily impacting the upper lobes. Models 
based on DL and largely “black box” ML algorithms 
are unable to provide insights into the types of 
changes in the parenchymal texture that occur as the 
severity of the emphysema increases at the 
parenchymal level.

The objective of this study is to investigate the 
efficacy of a simple and reproducible volumetric 
segmentation method of the upper lobe segments in 
determining the severity of centrilobular emphysema 
on CT scans, while also identifying the changes in 
radiological texture that arise as emphysema severity 
increases, using a machine learning algorithm based 
on logistic regression.

MATERIALS and METHODS

This retrospective, cross-sectional study was 
conducted at a single center and received approval 
from the Institutional Review Board (IRB), with 
written informed consent waived. The procedures 
adhered to the ethical guidelines of the 1964 
Declaration of Helsinki and its later amendments.

Study Population

For the study, a total of 354 patients over the age of 
18 were selected between June 2022 and June 2023 
based on the presence of keywords such as 
“Fleischner”, “centriacinar”, and “CLE” in their 
thoracic CT scan reports. The documented emphysema 

Materyal ve Metod: Son 12 ay içerisinde, torasik BT raporlarında “Fleischner”, “CLE” ve “sentriasiner” terimleri geçen toplam 354 
hasta incelendi ve 82 hastadan oluşan bir çalışma popülasyonu oluşturuldu. Çalışma popülasyonu Grup 1 (Fleischner hafif ve orta; 
n= 45) ve Grup 2 (Fleischner confluent ve advanced destructive; n= 37) olarak iki gruba ayrıldı. Vakalarda her iki akciğerin üst lob 
segmentlerine odaklanan volumetrik bir segmentasyon gerçekleştirildi. Bu segmente edilmiş hacimlerden şekil, boyut, birinci derece 
ve ikinci derece radyomiks parametreleri hesaplandı. En iyi model parametreleri Bayesyen Bilgi Kriteri temel alınarak seçildi ve Grid 
Search ile optimize edildi. Son model, 1000 iterasyonluk Bootstrap Resampling ile test edildi.

Bulgular: Eğitim setinde hassasiyet= 0,862, seçicilik= 0,870, doğruluk= 0,863 ve AUC= 0,910 olarak hesaplandı. Benzer şekilde, test 
setinde bu değerler sırasıyla hassasiyet= 0,848, seçicilik= 0,865, doğruluk= 0,857 ve AUC= 0,907 idi.

Sonuç: Radyomiks parametrelerden oluşturulmuş ve sınırlı bir vaka seti ile eğitilen lojistik regresyon modeli, bilgisayarlı tomografi 
görüntülerini kullanarak hafif ve ağır şiddetteki amfizem radyolojisini iyi bir seviyede ayırt etti.

Anahtar kelimeler: Amfizem; makine öğrenme; lojistik regresyon
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process in the patients’ reports was independently 
reviewed by the study’s author (MG, with 16 years of 
experience in thoracic radiology). The most common 
reasons for exclusion from the study were the 
administration of contrast medium (n= 146), presence 
of respiratory artifacts (n= 34), trace CLE lesions 
according to Fleischner criteria (n= 22), and missing 
slices in the nonenhanced thoracic CT studies in the 
PACS database (n= 16). The latter was exclusively 
observed in patients who had undergone 
nonenhanced CT scans across multiple anatomic 
locations due to trauma (Figure 1).

The final study set consisted of 82 patients. Based on 
the emphysema findings in the thoracic CT scans, the 
study set was divided into two groups: Group 1, 
which included cases classified as mild (n= 31) and 
moderate (n= 14), totaling 45 cases, and Group 2, 
which included cases classified as confluent (n= 21) 
and advanced destructive (n= 16), totaling 37 cases, 
according to the Fleischner emphysema classification 
(Figure 2).

CT Protocol

The CT scans were performed from the level of the 
first rib to the upper renal pole using a 128-detector 
CT scanner (GE Revolution, GE, Milwaukee, WI). 
Scans were acquired without contrast, utilizing the 

following parameters= 100 kV, 110 mAs, a 1.25 mm 
slice thickness for volumetric study, a 512 x 512 
reconstruction matrix, BonePlus kernel, and an 
adaptive statistical iterative reconstruction (ASIR) of 
70%, via body filter.

Segmentation and Feature Calculation

Both lungs of the patients were volumetrically 
segmented starting from the apex down to the level 
of the carina of the trachea. For this purpose, the 
semi-automatic Region Growing Tool in the Texture 
Plugin of Olea Sphere 3.0 SP32 (Olea Medical, 
LaCiotat, FR) software was used. The segmentation 
could not propagate distal to this level, as areas 
caudal to the main carina were masked (Figure 3). 
Since the segmentation achieved had optimized 
density values for lung parenchyma, the extensions of 
hilar vascular structures, the chest wall, and 
mediastinal structures were not sampled; however, 
the interlobular septa were included in the 
segmentation. Thus, the segmentation encompassed 
both apices as well as superior portions of both the 
upper lobe’s anterior and posterior segments. The 
reasons for preferring this style of segmentation are as 
follows: 1) To avoid individual variability in radiomics 
parameters, which can directly or inversely correlate 
with the sampling volume by segmenting the entire 
lung; 2) To ensure that the radiomics findings related 

Figure 1. Exclusion criteria.
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to CLE lesions, concentrated in the upper lobes, are 
not obscured by lower lobe segments lacking these 
types of lesions; and 3) To make rational use of 

computational resources and to keep computation 
times within reasonable limits.

Following the segmentation, radiomics feature 
calculations were carried out using the Volume of 
Interest (VOI) with the Texture Plugin on Olea Sphere 
3.0 SP32. In this study, a total of 112 parameters were 
calculated for each patient, encompassing the 
domains of original size, original shape, original first 
order, and second order domains [original gray level 
co-occurrence matrix (GLCM), original gray level run 
length matrix (GLRLM), original gray level size zone 
matrix (GLSZM), original neighboring gray tone 
difference matrix (NGTDM), original gray level 
dependence matrix (GLDM)]. Wavelet parameters 
were not considered.

The following steps were followed for the calculation 
of the parameters: 1) Since we worked with continuous 
negative HU values, to prevent the squaring of 
negative values in the calculations, a voxel array shift 
of 1024 was added to all voxels. 2) All voxels were 
resampled to 1 x 1 x 1 mm3 using the B-Spline 
interpolation method. 3) For grey value discretization, 
a fixed bin width of 25 was used. 4) In the calculations 
for second-order matrices, a distance of 1 voxel was 
chosen, and 13 isotropic displacement vectors with 
angles of 0, 45, 90, and 135 degrees were employed. 
5) Voxel densities to be used for the machine learning 
algorithm were normalized according to Eq (1).

(1).

Figure 2. A. Fleischner mild CLE, B. Fleischner moderate CLE, C. Fleischner Confluent CLE, 
D. Fleischner advanced destructive CLE.

A B

C D

Figure 3. A typical segmentation of the lung in the 
study. A. Axial view, B. Coronal view, C. Sagittal view.

A

B

C
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where f(x) is the normalized voxel density, x is the 
original density, μx is the mean density, σx is the 
standard deviation and S is the scaling factor (set to 
1).

Statistical Analysis

In the study, patients were categorized into two 
distinct groups for comparative analysis: Group 1, 
comprising patients with mild emphysema 
radiological features, and Group 2, comprising 
patients with severe emphysema radiological features. 
Both groups were assessed in terms of their mean 
age, gender distribution, as well as key radiomics 
parameters pertaining to lesion shape and size. To 
ascertain the normality of parameter distributions, 
the Shapiro-Wilk test was utilized. Subsequent group 
comparisons were conducted using the Student’s 
t-test for parameters following a normal distribution, 
and the Mann-Whitney U test for those not conforming 
to normality. Gender distribution between the groups 
was statistically evaluated employing Chi-square and 
Fisher’s exact tests. All statistical analyses were 
executed using SPSS version 27.0.1.

In this study, only radiomics parameters were used 
for LR model formation, and clinical parameters were 
not utilized for creating a hybrid model. Initially, 
parameter selection was done using the least absolute 
shrinkage and selection operator (LASSO) regression 
analysis method. However, due to the small size of 
the dataset, higher parameter models were further 
penalized using Bayesian Information Criterion (BIC) 
and Akaike Information Criterion (AIC). The best 
logistic regression models with 5, 6, 7, and 8 
parameters were then constructed and compared.

The possibility of multicollinearity among the selected 
model parameters was investigated using the variance 
inflation factor (VIF) measurement.

The models were separated into train and test sets 
under Python 3.9 using the sklearn and numPy 
libraries. The grid search method was employed for 
hyperparameter optimization. Cross-validation and 
test metrics were calculated with the specified 
libraries. 

The Hosmer-Lemeshow test was conducted using 
XLStat 2023 1.6.1410 software (Lumivero, Denver, 
CO). For the calibration plot, the “rms” library, 
compiled for the R statistical programming language, 
was utilized (14).

For decision curve analysis, we utilized the “dcurves” 
library, compiled for the R statistical programming 
language (15).

RESULTS 

Group characteristics

Of the total 82 patients, 45 (36 males, 9 females) 
were in Group 1, and 37 (33 males, 4 females) were 
in Group 2. Although males were numerically 
dominant, no significant difference was observed in 
terms of gender distribution between the two groups 
(p= 0.204 Chi-square, p= 0.365 Fisher’s exact test).

The average age of Group 1 was 64.13 ± 13.37, 
while the average age of Group 2 was 65.86 ± 9.01. 
No significant difference in age was observed 
between the two groups (p= 0.466, t-test).

Comparison of the Shape and Size Features of 
Segmentations 

Upon intergroup comparison, it was observed that 
the segmentations pertaining to patients in Group 2 
demonstrated higher volumes and dimensions, along 
with lower densities, with these findings being 
statistically significant (Table 1). The surface area-to-
volume ratio of the segmented lung tissue did not 
exhibit any significant differences between the two 
groups.

Logistic Regression Model

The best model selected by the Bayesian Information 
Criterion (BIC) consisted of five radiomics parameters 
along with an intercept, making a total of six 
parameters. 

In the model, specific features from both first and 
second order radiomics domains, the 10th percentile, 
GLCM information measure of correlation 2, GLSZM 
size zone non-uniformity normalized, and NGTDM 
strength, demonstrated statistically significant 
differences between the two groups (Table 1).

To assess the potential issue of multicollinearity 
among the model’s parameters, Variance Inflation 
Factor (VIF) values were calculated utilizing linear 
regression analysis. All calculated VIF values were 
found to be below the commonly accepted threshold 
of 3.0, thereby confirming the absence of 
multicollinearity concerns within the parameters of 
the model.
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Following the hyperparameter optimization, the 
optimized form of this model was given in Eq (2).

Model Prediction= 1 / (1 + exp - (-81.97 – 
(16.35 × Surface Area-to-Volume Ratio) – 
(0.12 × 10th percentile) + (15.39 × GLCM 
Informal Measure of Correlation 2) – (87.73 × 
GLSZM Size Zone Non-Uniformity 
Normalized) – (22.01 × NGTDM Strength)

(2)

The Hosmer-Lemeshow test, used to assess the 
agreement between the predicted risks and the 
observed outcomes of the model, demonstrated a 
good fit between the model’s estimated probabilities 

and the observed results (p= 0.811). Additionally, the 
calibration plot further corroborated these findings 
(Figure 4).

The model exhibited high sensitivity, specificity, 
accuracy, and AUC in both the training and test sets 
(Table 2). To avoid biased results due to the small size 
of the case set, the model was subjected to 1000 
iterations of bootstrap resampling. The table also 
provides the 95% confidence intervals (CI) for these 
metrics.

In the decision curve analysis, which evaluates 
various threshold probabilities to reflect the trade-off 

Table 1. Comparison of major shape and size features and model specific parameters between the groups

Feature Group 1 Group 2 p

Segmentation Volume (mL) 1075 ± 330 1474 ± 442 <0.001a

Surface area/Volume ratio 0.146 (0.057) 0.133 (0.062) 0.482b

Major axis (mm) 250.74 (25.47) 255.61 (30.78) 0.119b

Minimum density (HU) -1283 (57) -1328 (42) <0.001b

10th density (HU) -970 (32) -1013 (17) <0.001b

90th density (HU) -723 (63) -787 (75) <0.001b

Mean density (HU) -856 (40) -903 (37) <0.001b

IMC2 0.370 ± 0.073 0.440 ± 0.083 <0.001a

GLSZMNUN 0.446 ± 0.015 0.436 ± 0.015 0.006a

Strength 0.780 ± 0.047 0.610 ± 0.023 0.04a

Results are provided as mean + SD or median (IQR) according to the distribution of parameters.
a: T-test result, b: Mann-Whitney test result.
IMC2: GLCM information measure of correlation 2, GLSZMNUN: GLSZM non-uniformity normalized, Strength: NGTDM strength.

Figure 4. Calibration plot. Apparent and bias-corrected lines are close to the ideal 
condition. The model is well calibrated.
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between true positives (benefit) and false positives 
(harm), the model was found to provide a substantial 
net benefit across low, medium, and high threshold 
probability areas (Figure 5).

DISCUSSION

In this study, utilizing a dataset with a limited number 
of cases, we developed a machine-learning model 

that effectively differentiates between mild and severe 
emphysema using solely radiological parameters, 
without the inclusion of any clinical variables. Given 
that CLE is more commonly observed in smokers and 
predominantly appears in the upper lung lobes (16), 
this model was specifically designed using volumetric 
segmentation that encompasses a portion of the 
upper lung lobes.

Table 2. Features of the model in discriminating between mild and severe emphysema

Parameter p
Odds ratio 
(95% CI) Training set*

Sensitivity Specificity Accuracy AUC

SA/Vol 0.115 0.383  
0.116-1.263

0.862  
0.849-0.875

0.870  
0.864-0.876

0.863  
0.854-0.876

0.910  
0.898-0.922

10th 0.001 0.014  
0.002-0.122

IMC2 0.007 5.361  
1.52-18.278

Test Set*

GLSZNUN 0.039 0.187  
0.038-0.917

Sensitivity Specificity Accuracy AUC

Strength 0.027 0.311  
0.11-0.877

0.848  
0.834-0.682

0.865  
0.855-0.875

0.857  
0.850-0.865

0.907  
0.894-0.919

Intercept 0.088 0.380

*Results are derived from 1000 iterations of bootstrap resampling and given as mean and 95% CI.
SA/Vol: Surface area-to-volume ratio, 10th: 10th percentile, IMC2: GLCM informal measure of correlation 2, GLSZNUN: GLSZM size zone non-
uniformity normalized, Strength: NGTDM strength.

Figure 5. Decision curve analysis. Model (blue) is creating better net benefit under 
nearly all threshold probabilities. None (green)= Hypothesis predicting there is no 
severe emphysema in the study group (False negative results and no net benefit). All 
(red)= Hypothesis predicting all cases in the study group are severe emphysema 
(False-positive results and limited net benefit).
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The relationship between radiomics parameters and 
the VOI is contingent on the formula used to calculate 
each parameter. Accordingly, there are parameters 
that increase with segmentation volume (such as 
energy), decrease (like coarseness and compactness), 
or remain constant (e.g., Mean Intensity, Entropy) 
(17). Previous studies have reported that the intraclass 
correlation among radiomics features declines as 
segmentation volumes increase (18). Therefore, 
although “whole lung” segmentations might broaden 
the sample size, they were not employed due to the 
anticipated adverse effect on the calculated radiomics 
parameters.

In a comparative evaluation of parameters related to 
shape and size domains, it was observed that patients 
with more severe emphysema exhibited lower HU 
values in parenchymal density parameters, which 
aligns with existing literature (19). Among these 
parameters, only the 10th percentile was selected by 
the BIC method for inclusion in the model; however, 
the interquartile range also appears among the 
parameters chosen by LASSO. All efforts to reduce 
the number of parameters were undertaken to protect 
the model from overfitting. Maintaining a high 
number of parameters in machine learning models 
trained on datasets with a low sample size can result 
in poor performance in test sets due to overfitting 
(20). Therefore, it was not possible to use all the 
parameters selected by LASSO in this study.

In the domain of shape, the surface area-to-volume 
ratio was a consistent parameter across candidate 
models that included 6, 7, or 8 radiomics parameters, 
aside from the selected model. Interestingly, this 
occurred even though statistically there was no 
significant difference between the mild and severe 
emphysema groups for this parameter. This ratio 
reaches its highest values in objects resembling 
pyramids or tetrahedra and its lowest in spheres (21). 
Within the chest cavity, constrained by the ribcage, it 
has been demonstrated that lung density and the total 
volume of emphysematous lesions are linearly related 
to the surface area-to-volume ratio parameter (22).

The inclusion of first- and second-order parameters in 
the model serves to quantify the radiographic 
representation of emphysematous regions. As the 
extent of emphysematous areas increases, the 
relatively heterogeneous parenchyma of normal lung 

tissue recedes, being supplanted by homogeneous, 
low-density emphysematous zones. Specifically, 
parameters such as the 10th percentile, GLCM 
information measure of correlation 2, GLSZM size 
zone non-uniformity normalized, and NGTDM 
Strength all show statistically significant differences 
between the two groups.

This study has some limitations. First, the study was 
conducted with a small set of cases. To prevent this 
from causing biased results, 1000 iterations of 
bootstrap resampling were used. Second, this study 
reflects the results of a single center. However, by 
harmonizing results from other hospitals and other 
CT scanners (23), it is possible to eliminate device-
related footprints and ensure further improvement of 
the model. Finally, the semi-automatic segmentation 
tool used in this study requires user intervention, and 
artificial intelligence algorithms that provide fully 
automatic segmentation could not be used. In the 
near future, we aim to develop an automatic lung 
segmentation algorithm for the institution scanners 
where the study was carried out.

CONCLUSION

In conclusion, this study, conducted with a limited 
dataset, successfully distinguished severe emphysema 
from mild emphysema in radiological terms. In the 
future, there is potential to individualize the diagnosis 
and treatment for COPD patients by incorporating 
quantified radiological features into clinical data.
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